
Software Safety

Nancy G. Leveson

Aeronautics and Astronautics
MIT

leveson@mit.edu

http://sunnyday.mit.edu

Safety Reliability

Conclusions

Most software-related accidents stem from requirements flaws

Safety must be built-in 

Requires additions and changes to standard processes

Presentation at the FAA Software Certification Meeting, Danvers, MA June 7 2001

�



GEARBOX

CATALYST

LA

VAPOR

REACTOR

REFLUX

VENT

CONDENSER

COOLING

WATER

COMPUTER

LC

Accident with No Component Failures 

. .

Types of Accidents

No components may have "failed"

Component Failure Accidents

System Accidents

Single or multiple component failures

Usually assume random failure

Arise in interactions among components 

Caused by interactive complexity and tight coupling

Exacerbated by the introduction of computers.

�



Are usually caused by flawed requirements

Incomplete or wrong assumptions about operation of
controlled system or required operation of computer.

Unhandled controlled-system states and environmental
conditions.

Merely trying to get the software ‘‘correct’’ or to make it
reliable will not make it safer.

Software-Related Accidents

what is specified in requirements.
Software has unintended (and unsafe) behavior beyond

Requirements do not specify some particular behavior

behavior unsafe from a system perspective.
Correctly implements requirements but specified

required for system safety (incomplete)

Software may be highly reliable and ‘‘correct’’ and still 
be unsafe.

In highly-automated systems, accidents have changed
their nature.

Software-Related Accidents (con’t.)

�



� ������	�
 ��������	������������ �������
������
 ������������	�����������������	�
 �����

 !����
 ����������"�������	��#��"�	
"���������������	��%$&"�����	��#��� �������
��
 ����� ����%$&	��#��
 ��
 ��������	����#
 ��� �%$
����������������	����'����������� �

()���#
 ��
 "���	�
 ���

* ����������	��������	����������
�������#��	�
 ���������#��+���
 �#��������	��
������������
 ����"������,	��#��
 ��	��

A Human-Centered, Safety-Driven Design Process

Human Factors System
Engineering System Safety

-)� � ��"���	���	�����.��������
���������#��	��������	����/������
 ���

0 
 ��"�� ����
 ����1324� 5

������	��#��
 ��
 ���

6 ��������	�
 �����

78
 ��� ��	�����	�
 ���9$&
 ����	���� � ��	�
 ���!$

2���������������������� ����	����������#��	����
	�����.���������"���������������	
:�� ��"�.�:���;�:���<�����
 ���
0 �����	�����������
 ����5

Responsibilities

Operator Task and 

Operator Goals and

Training Requirements

Task Allocation Principles 

Simulation/Experiments

Usability Analysis

Other Human Factors
Evaluation 
(workload, situation
awareness, etc.)

Performance Monitoring

Hazard List

Fault Tree Analysis

Safety Requirements and
Constraints

Completeness/Consistency
Analysis

State Machine Hazard 
Analysis

Deviation Analysis (FMECA)

Mode Confusion Analysis

Human Error Analysis

Timing and other analyses

Safety Testing
Software FTA

Simulation and Animation

Preliminary Task Analysis 

Operator Task Analysis

Operational Analysis Operational Analysis

Safety Verification

System Hazard Analysis

Preliminary Hazard Analysis

Periodic audits

Change Analysis
Performance Monitoring

Periodic audits

Incident and accident analysis

Change Analysis

=



Communication channels

Management Changes

Software safety as part of system safety plan

Assigning responsibility and authority

software safety engineer?

Software hazard tracking system

Anomaly reporting system

Operator goals and responsibilities

Process Steps

Preliminary Task Analysis

Task allocation principles

Operator task and training requirements

Preliminary Hazard Analysis

Hazard list

System hazard analysis (tracing hazards to potential causes)

Safety requirements and constraints

(hazard not equal to failure)

1.

>



Specifying Safety Constraints

Most software requirements only specify nominal behavior

Need to specify off-nominal behavior

Need to specify what software must NOT do

What must not do is not inverse of what must do

Derived from system hazard analysis (not failure analysis)

Process Steps (2)

2. Generate system requirements and design constraints

using information in PTA and PHA

3. Design at system level to eliminate or control hazards

Trace hazards and hazard controls to software4.

?



Process Steps (3)

5.

Completeness

Software requirements review and analysis

Simulation and animation

Software hazard analysis

Robustness (environment) analysis

Mode confusion and other human error analyses

Human factors analyses (usability, workload, etc.)

6. Implementation with safety in mind

Defensive programming

Assertions and run-time checking

Separation of critical functions

Elimination of unnecessary functions

Exception-handling etc.

7. Off-nominal and safety testing

Process Steps (4)

@



Process Steps (5)

8. Operational Analysis and Auditing

Change analysis

Incident and accident analysis

Performance monitoring

Periodic audits

Specification Tools and Requirements Methodology

A set of integrated tools to assist in
building complex safety-critical systems.

A



Bridge between disciplines

Support for human problem solving

Traceability

Support for safety analyses

Integration of formal and informal specifications

Assistance in software evolution

as well as what and how.
Hierarchical abstraction based on ‘‘why’’ (design rationale)

Support systems engineering

Requirements development

Seamless transition from system to software

Evolution and maintenance

Built on knowledge about human-problem solving

Provide human-centered specification and analysis tools

Provide cost effective safety assurance

Support task-centered automation (vs. technology-centered)

enhance intellectual manageability.
Uses visualization and new types of abstraction to

SpecTRM Goals

Intent Specifications

B



CEDEF�CEGEF8H IKJL�M8DEH INMEOPH DEQ
RTS OVUKMEOPL�CEDEW S

CEDEF�O S J&GEX IKJ
YZS J&IE[8X C8DEJ
CEDEF�O S J&GEX IKJ
YZS J&IE[8X C8DEJ
O S J\GEX INJ[EX CEDEJ]CEDEF
^ DECEX _&J&H J

O S J\GEX INJ[EX CED�CEDEF
` CEX H FEC8INH MED

a CEb&CEOPF^ DECEX _&J&H J

cTdecf]gZhEikj8lVmZi nToEpElPhEqrj8sZt�u8mZq�g%mZsZhEsZlPp
Decomposition

Intent

Refinement

O SEv G S J&IKJ&w S INW\x
y OVOPMEOZO S [EMEOPINJ\wEW&zEC8DEQ S

Y OVCEH DEH DEQ�L�CEI S OVH CEX J
{ C8H D8I S D8CEDEW S

| [ S OVC8INM8OZL�C8DEGECEX J
[EOVM8W S FEG8O S J
^ GEFEH I| [ S OVC8INH MED8J

CEJ&J S L�}8X _]H DEJ&IKOPGEW&IKH M8DEJ
~ MEUKIN�eCEO S W&MEF S wEzECEOPFE�eCEO S

F S J&H QED[EzE_&J\H W\CEX&W&M8DEIKOVMEX J

� sZ�E�KikmZsZq�hEsZl

Y CEJ&�]CEX X MEW&CEIKH MED

�]�)� F S J&H QED8w
�eS [Ex

R zE_&J&H W&C8X

F S J&H QED�J&[ S W&J
~ MEUKIN�eCEO S CEDEF�zEC8OVFE�eCEO Sae� � F S J&H QED�eS [Ex

�eS J&H QED

� DEI S OPUNC8W S J&[ S W&H UNH W&CEIKH MEDEJL�M8F S X J
� X C8W&�&}EM8�]UNGED8W&IKH MED8CEX

ae� � L�M8F S X J
| [ S OVC8INM8O Y CEJ&�L�M8F S X JL�M8F S X J

y DE�&H OVM8DEL S DEI
{ M8F S X J
� X C8W&�&}EM8�

R OVH DEW&H [EX S J
~ _&J&I S L

R GEOV[8MEJ S
~ _&J&I S L �9�����\�����P� �\�&�� MEDEJ&IKOVC8H D8INJ �eS J&[EM8DEJ&H }EH X H IKH S J�eSEv GEH O S L S DEIKJ� ��� O SEv GEH O S L S DEIKJ

~ _&J&I S L�Q8MECEX J&wEz8H Q8zE�VX S � S XO SEv GEH O S L S DEIKJ&w8F S J&H QEDW&MEDEJ\INOPCEH DEIKJ&wEX H L�H INC8INH MEDEJ
y �&I S OVD8CEXH D8I S OPUNC8W S J

Y CEJ&�]CED8CEX _&J S J
� MEDEIKOVMEX J&w8FEH J\[EX CE_&J

� MEQEH W][EOPH D8W&H [8X S J&wW&MEDEIKOVM8X&X CE�eJ&wUNGED8W&IKH M8DECEX&F S W&MEL�[EM8J&H INH MEDCEDEF�CEX X MEW&CEIKH MED

  hE�EhE¡8¢

  hE�EhE¡8£

  hE�EhE¡8¤

  hE�EhE¡8¥

  hE�EhE¡8¦

  hE�EhE¡8§

R OVM©¨ S W\IEL�CEDECEQ S L S DEIE[8X CED8J&wEJ\INCEIKGEJ]H DEUKMEOVL�CEIKH MEDEwEJ\CEU S IK_3[8X C8DEw S IKW&x  hE�EhE¡8ª

Mappings between levels provide relational info necessary to
reason across hierarchical levels.

Intent Specifications

Each level supports a different type of reasoning about system.

Operations

Part-Whole

Refinement

Intent

Validation 
Verification 

Environment Operator System 

Representation
Design

System
Purpose

System Design
Principles

Representation
Physical

Behavior
Blackbox

�Z«



Historical Perspective

Introduction 

Environment Description

Environment Assumptions

precision of 100 feet.
Altitude information is available from intruders with a minimum

All aircraft have legal identification numbers.

Environment Constraints

System Functional Goals

must not degrade the performance of the TCAS equipment.
The behavior or interaction of non-TCAS equipment with TCAS

Provide affordable and compatible collision avoidance system 
options for a broad spectrum of National Airspace System users.

High-Level Requirements

[1.2] TCAS shall provide collision avoidance protection for any two 
aircraft closing horizontally at any rate up to 1200 knots and  
vertically up to 10,000 feet per minute.

Level 1:  System Purpose

Assumption:  Commercial aircraft can operate up to 600 knots and
5000 fpm during vertical climb or controlled descent (and therfore
the planes can close horizontally up to 1200 knots and vertically 
up to 10,000 fpm.

Design and Safety Constraints

[SC5] The system must not disrupt the pilot and TCC operations during
critical phases of flight nor disrupt aircraft operation.

[SC5.1] The pilot of a TCAS-equipped aircraft must have the
option to switch to the Traffic-Advisory-Only mode where TAs 
are displayed but display of resolution advisories is prohibited.

parallel runways when two aircraft are projected to come close 
to each other and TCAS would call for an evasive maneuver.

Assumption: This feature will be used during final approach to 

�T�



2.36, 2.38, 2.48, 2.49.2 

SC-7.1   Crossing maneuvers must be avoided if possible.

SC-7    TCAS must not create near misses (result in a hazardous level of vertical
separation) that would not have occurred had the aircraft not carried TCAS.

2.51, 2.56.3, 2.65.3, 2.66 

SC-7.2   The reversal of a displayed advisory must be extremely
rare.

2.52 

SC-7.3   TCAS must not reverse an advisory if the pilot will have
insufficient time to respond to the RA before the closest
point of approach (four seconds or less) or if own and
intruder aircraft are separated by less than 200 feet vertically
when 10 seconds or less remain to closest point of approach.

Example Level 1 Safety Constraints for TCAS

Level 1:  System Purpose (2)

System Limitations

Operator Requirements

Human-Interface Requirements

Hazard and other System Analyses

L.5  TCAS provides no protection against aircraft with nonoperational 

OP.4   After the threat is resolved the pilot shall return promptly and 
smoothly to his/her previously assigned flight path.

or non-Mode C transponders.

�%�



SC4.2 2.35

L.5

1.23.1

1.23.1

2.19

...
<Self-monitor shuts down TCAS unit>
Sensitivity level set such that no RAs are displayed.

TCAS unit is not providing RAs.

No RA is generated by the logic

Inputs do not satisfy RA criteria

Surveillance puts threat outside corrective RA position.

Surveillance does not pass adequate track to the logic

<Display hardware fails>

<Display is preempted by other functions>

1.23.1

SC4.8 2.22

<Process/display connectors fail>

<Surveillance error causes incorrect range/range rate 
to be calculated>

Altitude reports put threat outside corrective RA position

...
<Intruder maneuver causes logic to delay
RA beyond CPA>

Altitude errors put threat in non-threat position.

Altitude errors put threat on ground

...

<Surveillance failure>

<Uneven terrain>

<Own radar altimeter error>

<Own Mode C altitude error>

<Intruder altitude error>

<Threat is non-Mode C aircraft>

1.23.1

TCAS does not display a resolution advisory.

No RA inputs are provided to the display.

�Z�



OP.4

OP.10

OP.10

OP.1

1.4 to 1.14 2.74, 2.76

TCAS displays a resolution advisory that the pilot does not follow.

Pilot does not execute RA at all.

Crew does not perceive RA alarm.

<Crew does not believe RA is correct.>

<Inadequate alarm design>

<Crew is preoccupied>

...

Pilot executes the RA  but inadequately

<Pilot stops before RA is removed>

<Pilot continues beyond point RA is removed>

<Pilot delays execution beyond time allowed>

Example Level-2 System Design for TCAS

2.51   In most encounter situations, the resolution advisory sense will be
maintained for the duration of an encounter with a threat aircraft.

that sense to be reversed.   For example, a conflict between two

SC-7.2

However, under certain circumstances, it may be necessary for 

TCAS-equipped aircraft will, with very high probability, result in
selection of complementary advisory senses because of the
coordination protocol between the two aircraft.  However, if
coordination communications between the two aircraft are
disrupted at a critical time of sense selection, both aircraft may
choose their advisories independently.

Reversal-Provides-More-Separation

This could possibly result in selection of incompatible senses.

FTA-1300

FTA-395

2.51.1   [Information about how incompatibilities are handled]

3.31SENSE REVERSALS:

� =



Traffic and resolution advisories are inhibited for any intruder whose

2.19  When below 1700 feet AGL, the CAS logic uses the difference between
its own aircraft pressure altitude and radar altitude to determine the
approximate elevation of the ground above sea level (see Figure 2.5).
It then subtracts the latter value from the pressure altitude value received
from the target to determine the approximate altitude of the target above
the ground (barometric altitude - radar altitude + 180 feet).  If this altitude
is less than 180 feet, TCAS considers the target to be on the ground 

tracked altitude is below this estimate.  Hysteresis is provided to reduce 
vacillations in the display of traffic advisories that might result from hilly
terrain (
All RAs are inhibited when own TCAS is within 500 feet of the ground.

FTA-320). 

( 1.SC4.9).

OWN TCAS

Radar

Barometric
Airborne

Altimeter

Value
Altimeter

Declared

Sea Level

Ground Level

Estimated Elevation
of Ground

180-foot
Allowance

Declared
on Ground

Declared
on Ground

¬%



Altimeter 2
Digital

(Requirements State Machine)

Underlying formal model - RSM

Executable, black-box specifications

System components specified only in terms of
outputs and the inputs that trigger them.

SpecTRM-RL

Watchdog Timer

System behavior is combined behavior of components.

Digital

Specify external behavior only    no internal design.

Altimeter 1Altimeter
Analog

INT

DA2-Alt-Signal
{-50..2500}

{Fail,NCD,Test,Norm}
DA2-Status-Signal

INT{-50..2500}
DA1-Alt-Signal

{Fail,NCD,Test,Norm}
DA1-Status-Signal

{Below,Above}
Analog-Alt-Signal

{Invalid,Valid}
Analog-Alt-Status

  

Cockpit

Fault
Indicator
Lamp

On

Off

INFERRED SYSTEM STATE 

DOI-Status

Unknown

Cannot-be-determined

Below-threshold

At-or-above-threshold

Aircraft Altitude

Valid

Invalid

Unknown

Valid

Unknown

Invalid

Analog-Alt

Valid

Invalid

Unknown

(DOI)
Interest

of
Device

{High}
DOI-Power-On 

DOI-status-signal
{On, Off}

Inhibit {On,Off}

Reset {T,F}

Dig1-Alt

Dig2-Alt

Operational

Fault Detected

Startup

Not Inhibited

MODES
CONTROL

Cockpit Controls

MODE
SUPERVISORY

Unknown Fault-detectedOffOn

Watchdog-Strobe {High}

Inhibited

ALTITUDE SWITCH 

¬Z®



DOI-Status changed to Fault-Detected

References:

DOI-Power-On

high (on)

DOIDestination:

Acceptable Values:

Initiation Delay:

Completion Deadline:

Exception-Handling:

Feedback Information:

Variables:

Values:

Relationship:

Min. time (latency):

Max. time:

Output Command

Reversed By:

Comments:

Turned off by some other component or components.  Do not know which ones.

Exception Handling:

Should be on if ASW sent signal to turn on

DOI-status-signal

50 milliseconds

0 milliseconds

{high}

2 seconds

4 seconds

I am assuming that if we do not know if the DOI is on, it is better to turn it on again, i.e., that 
the reason for the restriction is simply hysteresis and not possible damage to the device.

threshold altitude.  Only this page needs to change for a product in the family that is 
triggered by rising above the threshold.

T

TPrev(Altitude) = At-or-above-threshold

Altitude = Below-threshhold

State Values DOI-Status = On F

(What to do if cannot issue command within deadline time)

TRIGGERING CONDITION

CONTENTS

= discrete signal on line PWR set to high

TOperational

Not Inhibited T

Control Mode

4.72.4.3

This product in the family will turn on the DOI only when the aircraft descends below the

¬%¯



CTAS PFAST (final approach spacing tool)

Advanced concepts in ATC

MTCD (Eurocontrol Conflict Detection Tool)

STARS (Raytheon): only small parts so far

Completeness and consistency analysis

Simulation and animation

Operator task analysis

State machine hazard analysis (backward search)
Including hybrid modeling and analysis

Software Deviation Analysis

Human Error Analysis (Mode Confusion)

Timing Analysis

Models have been or are being built for:

TCAS II

NASA industrial robot

FMS for Draper autonomous helicopter

FMS for MD-11

HETE satellite attitude control

FMS for experimental NASA aircraft

Feasibility and Scalability

Safety Analysis

¬Z°



Completeness: Requirements are sufficient to distinguish
the desired behavior of the software from
that of any other undesired program that
might be designed.

Startup, shutdown, mode transitions

Inputs and outputs

Robustness

Value and timing

Load and capacity

Environment capacity constraints

Data age

Latency

Feedback

Reversibility

Preemption

Requirements Completeness Criteria

Failure states and transitions

Human-computer interface

Path Robustness

Most software-related accidents involve software requirements
deficiencies.

Accidents often result from unhandled and unspecified cases.

We have defined a set of criteria to determine whether a
requirements specification is complete.

Derived from accidents and basic engineering principles.

Validated (at JPL) and used on industrial projects.

Requirements Completeness Analysis

¬Z±



State Machine Hazard Analysis

Backward search from hazardous state in SpecTRM-RL
model.

Generates information needed to eliminate hazardous 
state or to detect and handle it.

hybrid (discrete plus continuous) system models.
We are now extending models and analysis to include

Software Deviation Analysis

A new type of hazard analysis (Jon Reese’s dissertation, 1996)
based on the model that accidents are caused by deviations
in system variables (e.g., flow, pressure).

Related to HAZOP and FMECA

A type of forward robustness analysis:  How will software 
operate in an imperfect environment.

Determines whether a hazardous software behavior can 
result from a class of input deviations

e.g., measured aircraft velocity too low (measured or
assumed velocity is less than actual)

²´³



Two complementary approaches:

1.  Focus on automation:  

Evaluate contribution to human error.

2.  Focus on humans:  

Evaluate effect of proposed system changes

on human performance.

Input deviations to check

SpecTRM-RL (or RSML) specification

Safety-critical outputs

Set of deviations in software inputs plus paths through
specification sufficient to lead to a deviation in a 
safety-critical output.

SDA procedure can optionally add further deviations as
it executes that would, together with original deviation,
lead to unsafe output.

Thus allows for analysis of multiple, independent
deviations or failures.

Software Deviation Analysis (2)

Procedure is completely automated.  Analyst provides:

Output is a list of scenarios

.

Human Error Analysis

²)¬



Can be used in hardware-in-the-loop or 
operator-in-the-loop simulations

If formal, can be analyzed

Can be more easily reviewed

Can be reused (product families)

At end, have specification to use

Easily changed

Operator Task Models

the interaction between the human controllers and 
the computer.

To ensure safe and efficient operations, must look at

Uses same underlying formal modeling language but
more appropriate visual representation.

Break down high-level task into subtasks and model

along with other parts of the system model.
Operator task models can be executed and analyzed 

We are working on various types of mode confusion
complexity analysis and implications for training.

. .

Executable Specifications as Prototypes

²T²


